Table of Contents

Soil Structure and Clay Mineralogy

Soil Structure and Clay Mineralogy

Soil Structure

  • Geometric arrangement of soil particles with respect to one another is known as soil structure.
  • Depending upon the particle size and mode of formation, the following types are found.

Single Grained Structure

  • Found in coarse grained soils, like gravel, sand.
  • The major cause for formation is gravitational force. Here the surface forces are negligible.
  • Under the influence of gravitational forces, the grains will assume a particle to particle contact referred to as single grained structure.

Single grained structure may be loose or dense as shown below.

  • (a) Loosest state
  • (b) Densest state
Single Grained Structure


Honey-comb Structure

  • It is possible for fine sands or silts.
  • Both gravitational force and surface force are responsible.
  • Such a structure can support loads, only under static conditions.
  • Under vibrations and shocks, the structure collapses and large deformations take place.
Honey-comb Structure

Flocculated Structure

  • This structure occurs in clays.
  • Clay particles have a negative charge on surface and a positive charge on edges and flocculated structure occurs when there is an edge-to-face orientation.
  • A flocculated structure is formed when there is a net attractive force between the particles.
  • Soils with flocculent structure have a high void ratio and water content and, also have a low compressibility, a high permeability and high shear strength.


Flocculated Structure


Dispersed Structure

  • A dispersed develops in clays that have been reworked or remolded.
  • Remoulding converts ‘edge-to-face’ orientation to ‘face- to-face’ orientation.
  • Dispersed structure is formed when there is a net repulsive force between particles.
  • Have low shear strength, high compressibility and low permeability.

Dispersed Structure

Composite Structure

  • A composite structure in the form of coarse grained skeleton or clay-matrix is formed when soil contains different types of soil particle
Composite Structure


Clay Mineralogy

  • Important clay minerals kaolinite, Illite, montmorillonite and halloysite, are present in clays.
  • In coarse grained soils, like gravel, sand, rock minerals like quartz, feldspar, mica, etc., are present.

Kaolinite Mineral

  • One molecule of kaolinite mineral is made of one silica sheet and one gibbsite sheet.
  • Various such molecules are joined by hydrogen bonds.
  • These show less change in volume due to changes in moisture content.
  • Kaolinite is thus the least active of clay minerals.
  • Example: China clay

Illite Mineral

  • One molecule of Illite is made of two silica sheets and one gibbsite sheet, but in silica sheet, silicon atom is replaced by aluminum atom.
  • Various such molecules are joined together by ionic bond (potassium ion).
  • These shows medium swelling and shrinkage properties.
  • Example: Alluvial soil.

Montmorillonite Mineral (Also Called ‘Smectite’)

  • One molecule of montmorrilonite mineral is made of two silica sheets and one gibbsite sheet.
  • Gibbsite sheet is sandwiched between silica sheets.
  • Various such molecules are loosely bonded through water.
  • These soils show high volume changes on moisture variation (i.e., large swelling and large shrinkage).
  • Example: Black cotton soils, bentonite soil.


Diffuse Double Layer and Adsorbed Water

  • Clay particles usually carry a negative charge on their surface.
  • Because of net negative charge on the surface, the clay particles attract cations, such as potassium, calcium and sodium, from the moisture present in the soil to reach equilibrium.
  • The layer extending from the clay particle surface to the limit of attraction is known as a diffuse double layer.
  • The water held in the zone of the diffuse double layer is known as adsorbed water or oriented water.
  • The plasticity characteristics of clay are due to the presence of adsorbed water.
  • Clays using non-polar liquid, such as kerosene in place of water, does not show any plasticity characteristics.
  • The thickness of adsorbed water layer is about 10–15 A°for colloids, but may be up to 200 A° for silts.

Popular posts from this blog

RRB JE Recruitment 2024, Apply Online For 7951 Posts

How to get Civil Engineering Degree in Chhattisgarh:

Exploring the Vast Scope of Civil Engineering: Building the Foundations of Society

Stress Strain Curve for Mild Steel

Civil engineering - Building materials - Bricks Study

Structural Steel and Metal- Civil Engineering

Plasticizer charts - Admixtures used in RCC

The Great Wall of China: A Monumental Feat of Ancient Engineering

[Job Updates & Opportunities]vk

All post Here - script by vk

[abstract]vk [accelerators]vk [admixtrure]vk [Aggregate]vk [agrregate test]vk [aquifer]vk [Batten]vk [beam]vk [Bitumen]vk [Bolt]vk [Booster]vk [Boussinesq theory]vk [Brick]vk [Bricks]vk [Bricks Study]vk [Building Materials]vk [canal]vk [cast]vk [cement]vk [CIVIL ENGINEERING]vk
[abstract]vk [accelerators]vk [admixtrure]vk [Aggregate]vk [agrregate test]vk [aquifer]vk [Batten]vk [beam]vk [Bitumen]vk [Bolt]vk [Booster]vk [Boussinesq theory]vk [Brick]vk [Bricks]vk [Bricks Study]vk [Building Materials]vk [canal]vk [cast]vk [cement]vk [CIVIL ENGINEERING]vk [Civil engineering amazing]vk [Civil engineering amazing projects]vk [class]vk [coat]vk [concrete]vk [Concrete Technology]vk [construction management]vk [Contra-flexure]vk [Cost]vk [Coulombs Theory]vk [Critical Flow]vk [Cseb]vk [csphcl exam previous year papers and admit cards]vk [docks and harbour]vk [elastic]vk [Electrical and Electronics]vk [electronics]vk [Engineer's-Knowledge]vk [ENVIRONMENTAL ENGINEERING]vk [Ese Civil 2023 questions]vk [estimate]vk [Ethics and Moral]vk [Facts-About-Engineering]vk [ferro cement]vk [first]vk [FlOW-NET]vk [FLUID MECHANICS]vk [FOUNDATION]vk [Frog]vk [Geo-technical-engineering]vk [Glass]vk [good]vk [HEART]vk [high]vk [High density concrete]vk [HIGHWAY ENGINEERING]vk [hydration]vk [Hydraulic jump]vk [important notes]vk [Instruments and Tools]vk [Iron]vk [Irrigation]vk [isochrones]vk [Job Updates & Opportunities]vk [lime]vk [Local shear failure]vk [low]vk [management]vk [mason]vk [Masonry]vk [maturity of concrete]vk [MCQ]vk [medium]vk [Mild steel]vk [mortar]vk [Optimum Compaction]vk [paint]vk [pig]vk [Plastering]vk [plastic]vk [Plasticizers]vk [prime]vk [problem]vk [Project Management]vk [properties]vk [Question-Answer]vk [quick lime]vk [Quick Revision]vk [Quick-Revision]vk [Rankine Theory]vk [RCC]vk [Recommended]vk [Reinforced Concrete Construction]vk [resection]vk [retarder]vk [RING]vk [rock]vk [scope]vk [seasoning]vk [second]vk [Self compacted]vk [sensitivity]vk [SHAKES]vk [Shear center]vk [shear strenght]vk [slope deflection method]vk [Soil exploration and Boring]vk [SOIL MECHANICS]vk [Soil Structure and Clay Mineralogy]vk [SOM]vk [Stability of Slope]vk [STAR]vk [steel]vk [Steel Engineering]vk [stiffeners]vk [stone]vk [Strength of Material]vk [Structural Steel Design]vk [structure analysis]vk [Subjects]vk [surveying]vk [syphon]vk [tack]vk [temperature]vk [templates]vk [Terzaghi Theory]vk [Test]vk [Tests]vk [third]vk [TILES]vk [timber]vk [tpes]vk [TRANSPORTATION ENGINEERING]vk [Tunnel]vk [Types of flow]vk [valuation]vk [value]vk [vee bee]vk [Wall]vk [wastage]vk [Water Supply]vk [Weld]vk [westergaard theory]vk [workability]vk